PandasFilesystemDatasource
class great_expectations.datasource.fluent.PandasFilesystemDatasource(*, type: Literal['pandas_filesystem'] = 'pandas_filesystem', name: str, id: Optional[uuid.UUID] = None, assets: List[great_expectations.datasource.fluent.data_asset.path.file_asset.FileDataAsset] = [], base_directory: pathlib.Path, data_context_root_directory: Optional[pathlib.Path] = None)#
Pandas based Datasource for filesystem based data assets.
- add_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902abf140> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902abf200> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902abf350> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902abf440> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902abf7a0> = None, sep: typing.Optional[str] = None, delimiter: typing.Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: typing.Optional[typing.List] = None, false_values: typing.Optional[typing.List] = None, skipinitialspace: bool = False, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, skipfooter: int = 0, nrows: typing.Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str], None] = None, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: typing.Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: typing.Optional[int] = None, compression: CompressionOptions = 'infer', thousands: typing.Optional[str] = None, decimal: str = '.', lineterminator: typing.Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: typing.Optional[str] = None, comment: typing.Optional[str] = None, encoding: typing.Optional[str] = None, encoding_errors: typing.Optional[str] = 'strict', dialect: typing.Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Union[Literal['high', 'legacy'], None] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any)pydantic.BaseModel #
- add_excel_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9028e04a0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9028e0470> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9028e0a70> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9028e03e0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9028e1460> = None, sheet_name: typing.Optional[typing.Union[str, int, typing.List[typing.Union[int, str]]]] = 0, header: Union[int, Sequence[int], None] = 0, names: typing.Optional[typing.List[str]] = None, index_col: Union[int, Sequence[int], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb'], None] = None, true_values: Union[Iterable[str], None] = None, false_values: Union[Iterable[str], None] = None, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, nrows: typing.Optional[int] = None, na_values: typing.Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, parse_dates: typing.Union[typing.List, typing.Dict, bool] = False, date_format: typing.Optional[str] = None, thousands: typing.Optional[str] = None, decimal: str = '.', comment: typing.Optional[str] = None, skipfooter: int = 0, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, engine_kwargs: typing.Optional[typing.Dict] = None, **extra_data: typing.Any)pydantic.BaseModel #
- add_feather_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9028e2420> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9028e2a20> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9028e2b70> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9028e2d20> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9028e2de0> = None, columns: Union[Sequence[str], None] = None, use_threads: bool = True, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any)pydantic.BaseModel #
- add_fwf_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9028e3560> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9028e3620> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9028e3770> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9028e3920> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9028e39e0> = None, colspecs: Union[Sequence[Tuple[int, int]], str, None] = 'infer', widths: Union[Sequence[int], None] = None, infer_nrows: int = 100, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any)pydantic.BaseModel #
add_hdf_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9029342f0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9029343b0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902934500> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9029346b0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902934770> = None, key: typing.Any = None, mode: str = 'r', errors: str = 'strict', where: typing.Optional[typing.Union[str, typing.List]] = None, start: typing.Optional[int] = None, stop: typing.Optional[int] = None, columns: typing.Optional[typing.List[str]] = None, iterator: bool = False, chunksize: typing.Optional[int] = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel #
- add_html_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902934f50> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902935010> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902935160> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902935310> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9029353d0> = None, match: Union[str, Pattern] = '.+', flavor: typing.Optional[str] = None, header: Union[int, Sequence[int], None] = None, index_col: Union[int, Sequence[int], None] = None, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, attrs: typing.Optional[typing.Dict[str, str]] = None, parse_dates: bool = False, thousands: typing.Optional[str] = ',', encoding: typing.Optional[str] = None, decimal: str = '.', converters: typing.Optional[typing.Dict] = None, na_values: Union[Iterable[object], None] = None, keep_default_na: bool = True, displayed_only: bool = True, extract_links: Literal[None, 'header', 'footer', 'body', 'all'] = None, dtype_backend: DtypeBackend = None, storage_options: StorageOptions = None, **extra_data: typing.Any)pydantic.BaseModel #
add_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9029360f0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9029361b0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902936300> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9029364b0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902936570> = None, orient: typing.Optional[str] = None, typ: Literal['frame', 'series'] = 'frame', dtype: typing.Optional[dict] = None, convert_axes: typing.Optional[bool] = None, convert_dates: typing.Union[bool, typing.List[str]] = True, keep_default_dates: bool = True, precise_float: bool = False, date_unit: typing.Optional[str] = None, encoding: typing.Optional[str] = None, encoding_errors: typing.Optional[str] = 'strict', lines: bool = False, chunksize: typing.Optional[int] = None, compression: CompressionOptions = 'infer', nrows: typing.Optional[int] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel #
add_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9029370e0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9029371a0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9029372f0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9029374a0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902937560> = None, columns: typing.Optional[typing.List[str]] = None, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel #
add_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902937cb0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902937d70> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902937ec0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9029600b0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902960170> = None, engine: str = 'auto', columns: typing.Optional[typing.List[str]] = None, storage_options: Union[StorageOptions, None] = None, use_nullable_dtypes: bool = None, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel #
add_pickle_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902960950> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902960a10> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902960b60> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902960d10> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902960dd0> = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: typing.Any) pydantic.BaseModel #
add_sas_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9029614c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902961580> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9029616d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902961880> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902961940> = None, format: typing.Optional[str] = None, index: typing.Optional[str] = None, encoding: typing.Optional[str] = None, chunksize: typing.Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', **extra_data: typing.Any) pydantic.BaseModel #
add_spss_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9029620c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902962180> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9029622d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902962480> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902962540> = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel #
- add_stata_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902962cf0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902962db0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902962f00> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9029630b0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902963170> = None, convert_dates: bool = True, convert_categoricals: bool = True, index_col: typing.Optional[str] = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Union[Sequence[str], None] = None, order_categoricals: bool = True, chunksize: typing.Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: typing.Any)pydantic.BaseModel #
- add_xml_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902963a70> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902963b30> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902963c80> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902963e30> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902963ef0> = None, xpath: str = './*', namespaces: typing.Optional[typing.Dict[str, str]] = None, elems_only: bool = False, attrs_only: bool = False, names: Union[Sequence[str], None] = None, dtype: typing.Optional[dict] = None, encoding: typing.Optional[str] = 'utf-8', stylesheet: Union[FilePath, None] = None, iterparse: typing.Optional[typing.Dict[str, typing.List[str]]] = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any)pydantic.BaseModel #
- delete_asset(name: str)None #
Removes the DataAsset referred to by asset_name from internal list of available DataAsset objects.
- Parameters
name – name of DataAsset to be deleted.
- get_asset(name: str)great_expectations.datasource.fluent.interfaces._DataAssetT #
Returns the DataAsset referred to by asset_name
- Parameters
name – name of DataAsset sought.
- Returns
_DataAssetT – if named “DataAsset” object exists; otherwise, exception is raised.