Skip to main content
Version: 1.2.2

SparkDBFSDatasource

class great_expectations.datasource.fluent.SparkDBFSDatasource(*, type: Literal['spark_dbfs'] = 'spark_dbfs', name: str, id: Optional[uuid.UUID] = None, assets: List[Union[great_expectations.datasource.fluent.data_asset.path.spark.csv_asset.CSVAsset, great_expectations.datasource.fluent.data_asset.path.spark.csv_asset.DirectoryCSVAsset, great_expectations.datasource.fluent.data_asset.path.spark.parquet_asset.ParquetAsset, great_expectations.datasource.fluent.data_asset.path.spark.parquet_asset.DirectoryParquetAsset, great_expectations.datasource.fluent.data_asset.path.spark.orc_asset.ORCAsset, great_expectations.datasource.fluent.data_asset.path.spark.orc_asset.DirectoryORCAsset, great_expectations.datasource.fluent.data_asset.path.spark.json_asset.JSONAsset, great_expectations.datasource.fluent.data_asset.path.spark.json_asset.DirectoryJSONAsset, great_expectations.datasource.fluent.data_asset.path.spark.text_asset.TextAsset, great_expectations.datasource.fluent.data_asset.path.spark.text_asset.DirectoryTextAsset, great_expectations.datasource.fluent.data_asset.path.spark.delta_asset.DeltaAsset, great_expectations.datasource.fluent.data_asset.path.spark.delta_asset.DirectoryDeltaAsset]] = [], spark_config: Optional[Dict[pydantic.v1.types.StrictStr, Union[pydantic.v1.types.StrictStr, pydantic.v1.types.StrictInt, pydantic.v1.types.StrictFloat, pydantic.v1.types.StrictBool]]] = None, force_reuse_spark_context: bool = True, persist: bool = True, base_directory: pathlib.Path, data_context_root_directory: Optional[pathlib.Path] = None)#

Spark based Datasource for DataBricks File System (DBFS) based data assets.

add_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9028cd4c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9028cd580> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9028cd6d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9028cd880> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9028cd940> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, sep: typing.Optional[str] = None, encoding: typing.Optional[str] = None, quote: typing.Optional[str] = None, escape: typing.Optional[str] = None, comment: typing.Optional[str] = None, header: typing.Optional[typing.Union[bool, str]] = None, inferSchema: typing.Optional[typing.Union[bool, str]] = None, ignoreLeadingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, ignoreTrailingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, nullValue: typing.Optional[str] = None, nanValue: typing.Optional[str] = None, positiveInf: typing.Optional[str] = None, negativeInf: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, maxColumns: typing.Optional[typing.Union[int, str]] = None, maxCharsPerColumn: typing.Optional[typing.Union[int, str]] = None, maxMalformedLogPerPartition: typing.Optional[typing.Union[int, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, charToEscapeQuoteEscaping: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, enforceSchema: typing.Optional[typing.Union[bool, str]] = None, emptyValue: typing.Optional[str] = None, locale: typing.Optional[str] = None, lineSep: typing.Optional[str] = None, unescapedQuoteHandling: typing.Optional[typing.Literal['STOP_AT_CLOSING_QUOTE', 'BACK_TO_DELIMITER', 'STOP_AT_DELIMITER', 'SKIP_VALUE', 'RAISE_ERROR']] = None) pydantic.BaseModel#

add_delta_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9026ed460> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9026ed520> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9026ed670> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9026ed820> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9026ed8e0> = None, timestampAsOf: typing.Optional[str] = None, versionAsOf: typing.Optional[str] = None) pydantic.BaseModel#

add_directory_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9028cfbf0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9028cfcb0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9028cfe00> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9028cffb0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9026ec0b0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, sep: typing.Optional[str] = None, encoding: typing.Optional[str] = None, quote: typing.Optional[str] = None, escape: typing.Optional[str] = None, comment: typing.Optional[str] = None, header: typing.Optional[typing.Union[bool, str]] = None, inferSchema: typing.Optional[typing.Union[bool, str]] = None, ignoreLeadingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, ignoreTrailingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, nullValue: typing.Optional[str] = None, nanValue: typing.Optional[str] = None, positiveInf: typing.Optional[str] = None, negativeInf: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, maxColumns: typing.Optional[typing.Union[int, str]] = None, maxCharsPerColumn: typing.Optional[typing.Union[int, str]] = None, maxMalformedLogPerPartition: typing.Optional[typing.Union[int, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, charToEscapeQuoteEscaping: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, enforceSchema: typing.Optional[typing.Union[bool, str]] = None, emptyValue: typing.Optional[str] = None, locale: typing.Optional[str] = None, lineSep: typing.Optional[str] = None, unescapedQuoteHandling: typing.Optional[typing.Literal['STOP_AT_CLOSING_QUOTE', 'BACK_TO_DELIMITER', 'STOP_AT_DELIMITER', 'SKIP_VALUE', 'RAISE_ERROR']] = None, data_directory: pathlib.Path) pydantic.BaseModel#

add_directory_delta_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9026ee6f0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9026ee7b0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9026ee900> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9026eeab0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9026eeb70> = None, timestampAsOf: typing.Optional[str] = None, versionAsOf: typing.Optional[str] = None, data_directory: pathlib.Path) pydantic.BaseModel#

add_directory_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe90273c6b0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe90273c770> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe90273c8c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe90273ca70> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe90273cb30> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, primitivesAsString: typing.Optional[typing.Union[bool, str]] = None, prefersDecimal: typing.Optional[typing.Union[bool, str]] = None, allowComments: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedFieldNames: typing.Optional[typing.Union[bool, str]] = None, allowSingleQuotes: typing.Optional[typing.Union[bool, str]] = None, allowNumericLeadingZero: typing.Optional[typing.Union[bool, str]] = None, allowBackslashEscapingAnyCharacter: typing.Optional[typing.Union[bool, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedControlChars: typing.Optional[typing.Union[bool, str]] = None, lineSep: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, dropFieldIfAllNull: typing.Optional[typing.Union[bool, str]] = None, encoding: typing.Optional[str] = None, locale: typing.Optional[str] = None, allowNonNumericNumbers: typing.Optional[typing.Union[bool, str]] = None, data_directory: pathlib.Path) pydantic.BaseModel#

add_directory_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe90273faa0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe90273fb60> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe90273f770> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe90273fa40> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe90273fad0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = False, data_directory: pathlib.Path) pydantic.BaseModel#

add_directory_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902760830> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902760920> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9027608f0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902760860> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902760380> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = None, datetimeRebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, int96RebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, data_directory: pathlib.Path) pydantic.BaseModel#

add_directory_text_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9027616d0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe902761730> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe9027615b0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9027613d0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe902761700> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, wholetext: bool = False, lineSep: typing.Optional[str] = None, data_directory: pathlib.Path) pydantic.BaseModel#

add_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902705fd0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9027061e0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902706330> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe9027064e0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9027065a0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, primitivesAsString: typing.Optional[typing.Union[bool, str]] = None, prefersDecimal: typing.Optional[typing.Union[bool, str]] = None, allowComments: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedFieldNames: typing.Optional[typing.Union[bool, str]] = None, allowSingleQuotes: typing.Optional[typing.Union[bool, str]] = None, allowNumericLeadingZero: typing.Optional[typing.Union[bool, str]] = None, allowBackslashEscapingAnyCharacter: typing.Optional[typing.Union[bool, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedControlChars: typing.Optional[typing.Union[bool, str]] = None, lineSep: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, dropFieldIfAllNull: typing.Optional[typing.Union[bool, str]] = None, encoding: typing.Optional[str] = None, locale: typing.Optional[str] = None, allowNonNumericNumbers: typing.Optional[typing.Union[bool, str]] = None) pydantic.BaseModel#

add_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe90273ea20> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe90273eae0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe90273ec30> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe90273ede0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe90273eea0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = False) pydantic.BaseModel#

add_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe9027602f0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9027603b0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902760350> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902760440> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9027604d0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = None, datetimeRebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, int96RebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None) pydantic.BaseModel#

add_text_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe902761070> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe9027610d0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe902760fb0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe902760d40> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe9027610a0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, wholetext: bool = False, lineSep: typing.Optional[str] = None) pydantic.BaseModel#

delete_asset(name: str) None#

Removes the DataAsset referred to by asset_name from internal list of available DataAsset objects.

Parameters

name – name of DataAsset to be deleted.

get_asset(name: str) great_expectations.datasource.fluent.interfaces._DataAssetT#

Returns the DataAsset referred to by asset_name

Parameters

name – name of DataAsset sought.

Returns

_DataAssetT – if named “DataAsset” object exists; otherwise, exception is raised.